

Consiglio Nazionale delle Ricerche

Istituto per l'Energetica e le Interfasi – Milano ITALY

Experimental Correlation between Particle Size and Laser-Induced Incandescence (LII) Time Decay in TiO₂ Flame Synthesis

C. Bellomunno, S. Maffi, F. Cignoli, G. Zizak and G. Angella

bellomunno@ieni.cnr.it

Flame manufacturing of nanoparticles:

FLAME SYNTHESIS:

AN OUTSTANDING METHOD TO PRODUCE NANOPARTICLES

Product powders	Volume (Mt/year)	Value (B\$/year)
Carbon Black	8	8
Titania	2	4
Fumed silica	0.2	2

After Wegner et al., Chemical Engineering Science 58 (2003) 4581

Reaction Burner and Sampling set-up

 $V_{CH4} = 0.7$ Nl/min; $V_{AIR} = 8$ Nl/min; $\Phi = 0.81$;

 $\succ \text{Ti}(\text{OC}_{3}\text{H}_{7})_{4} \longrightarrow \text{TiO}_{2}$

Advanced Materials

10 cm

 $V_{N2} = 0.2 \text{ NI/min}$

TiO₂ size evolution along the reaction flame

TEM images of particles collected at:

a) 5mm HAB b) 15mm HAB c) 25mm HAB d) 50mm HAB NXT E51383 200.0KV - X200K ES1416 200.0XV X200X ES1396 200.0KV x200 ES1379 200 0KV x20

^{– 20} nm

HAB = Height Above the Burner

TiO₂ phase evolution along the reaction flame

%It would be very useful the availability of a diagnostic technique allowing insights in the particle formation and growth process. In particular, an

ON-LINE DIAGNOSTICS

would be very attractive :

- ✓ near real-time response;
- ✓ spatial resolution;
- ✓ non-intrusive.

in gas-phase reaction some chance...

Laser Induced Incandescence: PRINCIPLES

The LII signal is based on the energy and mass balance between a single particle and its surrounding

LII signal: A powerful tool in SOOT diagnostic

How could react particles different from soot to strong laser irradiation?

R.L. Vander Wal et al., 1999 Laser Induced Emission (LIE)

LII on Non-Carbonaceous particles: STATE OF THE ART

- Metals nanoparticles by laser ablation (R.L. Vander Wallet al., 1999)
- Various nanoparticles at room T in a cell (A.V. Filippov et al., 1999)
- Oxides np by laser evaporation reactor (A. Leipertz, S. Danckers, 2003)
- Manganese oxide by laser evaporation reactor (T. Lehre et al., 2005)
- ✓ Fe from a hot-wall reactor (B. F. Kock et al., 2005)
- ✓ TiO₂ flame synthesis (S. Maffi et al., 2008)

***LII ON TITANIA FLAME** LIE and TIRE-LII : Operative Condition

- Excitation Wavelength
- Laser Fluence
- Detection Wavelength

Uv–vis absorption spectra of flame-synthesized TiO₂ powders of different particle sizes. \bullet , 6 nm; —, 12 nm; \bigcirc , 30 nm.

266 nm (4° harmonic of the Nd:YAG laser)

LIE spectra at High Laser Fluence

at different HAB

Excitation: 266 nm
 Fluence: 600 mJ/cm²

LIE spectra at different Laser Fluences: TIME EVOLUTION

Particles destroyed

Spectrum is less structured

Prompt LIE spectra at Different Laser Fluences

✓ fluence values up to about 40 mJ/cm² give satisfactory results for titania at 266 nm

Time decay of the emission signal at Different Laser Fluences

✓ Excitation: 266 nm
✓ Detection: 415 nm
✓ HAB: 20 mm
✓ dp= 20 nm (by TEM)

Lll signals at Different HAB

LII signal is sensitive to particle size

S. Maffi, F. Cignoli, C. Bellomunno, S. De Iuliis, G. Zizak, Spectrochim. Acta Part B (2008)

120

time (ns)

140

Operative procedure

- particle sampling on TEM grids at different location in the flame;
- 🛠 TEM images;
- 😽 image analysis;
- Particle size statistics and lognormal distribution of particles for the whole flame

🐝 LII

Choice of the suitable LII operative conditions (best detection wavelength, trade-off between SNR, probe volume size, spectral integration, dynamic range);

%TIRE-LII recording and
processing for the whole flame

TEM – IA – Particle Size Statistics

TEM images and lognormal distribution of particles at 15 mm a) and 50 mm b)

Counter Median Diameter (CMD) of titania particles in the reaction flame

> counter median diameter obtained by the lognormal distribution of particles

Temporal evolution of the Emission spectrum (uncorrected for system spectral response)

just after the laser pulse the maximum signal is at short wavelengths (higher temperature) but...

LII signal at different detection wavelengths

...at longer wavelengths the signal drops more slowly allowing better SNR at longer times

Conclusion, Problems and Perspectives

- LII signal can be rather safely obtained in flame reactors;
- LII decay time is clearly and continuously depending on particle size;
- Suitable LII operative conditions should be selected:
 - 1. Excitation wavelength in the UV region
 - 2. Laser fluence carefully determined through spectral test
 - 3. Detection wavelength
- Signal quality can be further increased;
- a real-time measurement is in principle feasible (as it is for soot already) at least for TiO₂. A suitable model seems to be mandatory and TiO₂ parameters must be well known.
- If successful, the method offers unique advantages

 $Q_{\rm abs} \frac{\pi d_{\rm p}^2}{\Lambda} E_{\rm i} - \Lambda (T - T_0) \pi d_{\rm p}^2 + \frac{\Delta H_v}{M} \cdot \frac{dm}{dt}$

 $-\pi d_{\rm p}^2 \int \varepsilon(d_{\rm p},\lambda) M_{\lambda}^b(T,\lambda) d\lambda - \frac{\pi d_{\rm p}^3}{6} \rho C \frac{dT}{dt} = 0$

- •ABSORPTION OF LASER IRRADIATION Q_{abs}: absorption efficiency E_i: laser irradiance
- •HEAT LOSS DUE TO CONDUCTION Λ: heat transfer coeff.
- T: particle temperature
- T₀: gas temperature
 - •VAPORIZATION ΔH_v : heat of vaporization M: molar mass

- •RADIATION ϵ : emission coeff. M^{b}_{λ} : blackbody spectral radiant exitance λ : wavelength
- •CHANGE IN INTERNAL ENERGY ρ: density C: specific heat

LIE spectra at Medium Laser Fluence

Young particles seem to be more sensitive to the fluence value

✓ Excitation: 266 nm
 ✓ Fluence: 60 mJ/cm²

27